r-无需在服务器上插入所有代码的方法
发布时间:2022-09-10 21:35:26 585
相关标签:
下面的代码使用WSM
(加权和法)生成最终排名表的方法。为此,有必要选择标准权重。正如在代码中一样,我正在手动选择标准权重(weights <- c(0.5,0.5)
).从这个意义上说,我做了两个numericInput
用于选择权重。解决这个问题的一个方法是把所有的东西都放在一个reactive
在server
,答案如下:仅当更新闪亮应用程序中的数字输入时生成表格
然而,我希望看到不剥离与上的WSM计算有关的代码的可能性server
,正如我在给出的链接中所做的那样。在这种情况下,这部分代码:
weights <- c(0.5,0.5)
scaled <- df1 |>
mutate(Coverage = min(Coverage) / Coverage,
Production = Production / max(Production))
scaled <- scaled |>
rowwise() |>
mutate(`Performance Score` = weighted.mean(c(Coverage, Production), w = weights))
scaled$Rank <- (nrow(scaled) + 1) - rank(scaled$`Performance Score`)
因此,还有其他解决方法吗?
library(shiny)
library(shinythemes)
library(dplyr)
df1<-structure(list(nclusters = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35), Coverage = c(0.0363201192049018,
0.0315198954715543, 0.112661460735583, 0.112661460735583, 0.112661460735583,
0.0813721071219816, 0.0862146652218061, 0.0697995564757394, 0.0599194966471805,
0.0507632014547115, 0.052076958349629, 0.052076958349629, 0.052076958349629,
0.052076958349629, 0.052076958349629, 0.052076958349629, 0.0410332568832433,
0.0389940601722214, 0.0441742111970355, 0.0441742111970355, 0.0441742111970355,
0.0438099091238968, 0.0409906284310306, 0.0409906284310306, 0.035480410134286,
0.035480410134286, 0.035480410134286, 0.035480410134286, 0.035480410134286,
0.035480410134286, 0.035480410134286, 0.0345381204372174, 0.0287729883480053,
0.0287729883480053), Production = c(1635156.04305, 474707.64025,
170773.40775, 64708.312, 64708.312, 64708.312, 949.72635, 949.72635,
949.72635, 949.72635, 949.72635, 949.72635, 949.72635, 949.72635,
949.72635, 949.72635, 949.72635, 949.72635, 949.72635, 949.72635,
949.72635, 949.72635, 949.72635, 949.72635, 949.72635, 949.72635,
949.72635, 949.72635, 949.72635, 949.72635, 949.72635, 949.72635,
949.72635, 949.72635)), class = "data.frame", row.names = c(NA,-34L))
weights <- c(0.5,0.5)
scaled <- df1 |>
mutate(Coverage = min(Coverage) / Coverage,
Production = Production / max(Production))
scaled <- scaled |>
rowwise() |>
mutate(`Performance Score` = weighted.mean(c(Coverage, Production), w = weights))
scaled$Rank <- (nrow(scaled) + 1) - rank(scaled$`Performance Score`)
ui <- fluidPage(
column(4,
wellPanel(
numericInput("weight1", label = h4("Weight 1"),
min = 0, max = 1, value = ""),
selectInput("maxmin1", label = h5("Maximize or Minimize?"),
choices = list("","Maximize " = "+", "Minimize" = "-"), selected = NULL),
numericInput("weight2", label = h4("Weight 2"),
min = 0, max = 1, value = ""),
selectInput("maxmin2", label = h5("Maximize or Minimize?"),
choices = list("","Maximize " = "+", "Minimize" = "-"), selected = NULL),
helpText("The sum of weights should be equal to 1"))),
hr(),
column(8,
tabsetPanel(
tabPanel("table", dataTableOutput('table'))))
)
server <- function(input, output,session) {
observeEvent(input$weight1, {
updateNumericInput(session, 'weight2',
value = 1 - input$weight1)
})
output$table <- renderDataTable({
datatable (scaled,options = list(columnDefs = list(list(className = 'dt-center', targets = "_all")),
paging =TRUE,searching = FALSE, pageLength = 10,dom = 'tip',scrollX=TRUE),
rownames = FALSE)
})
}
shinyApp(ui = ui, server = server)
特别声明:以上内容(图片及文字)均为互联网收集或者用户上传发布,本站仅提供信息存储服务!如有侵权或有涉及法律问题请联系我们。
举报