返回

【预测模型-SVM分类】基于算术优化算法优化支持向量机SVM实现数据分类附matlab代码

发布时间:2022-09-15 07:37:14 307
# 研究# 数据# 信息# 工具

1 内容介绍

支持向量机(Support Vector Machine,简称SVM)是借助于最优化方法解决数据挖掘中若干问题的有力工具,它不仅有着统计学习理论的坚实基础,而且具有直观的几何解释和完美的数学形式,并在一定程度上克服了"维数灾难"和"过学习"等传统困难.SVM自20世纪90年代由Vapnik提出以来一直处于飞速发展的阶段,并在手写数字识别,人脸识别,文本分类,生物信息,回归预测等诸多领域有了成功的应用.支持向量机主要包括分类和回归两大内容.

2 部分代码

%___________________________________________________________________%

%  Grey Wolf Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%


% This function initialize the first population of search agents

function Positions=initialization(SearchAgents_no,dim,ub,lb)


Boundary_no= size(ub,2); % numnber of boundaries


% If the boundaries of all variables are equal and user enter a signle

% number for both ub and lb

if Boundary_no==1

    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;

end


% If each variable has a different lb and ub

if Boundary_no>1

    for i=1:dim

        ub_i=ub(i);

        lb_i=lb(i);

        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;

    end

end

3 运行结果

【预测模型-SVM分类】基于算术优化算法优化支持向量机SVM实现数据分类附matlab代码_分类算法

4 参考文献

[1]高艳山. 基于支持向量机的分类算法研究[D]. 山东科技大学, 2012.

部分理论引用网络文献,若有侵权联系博主删除。


特别声明:以上内容(图片及文字)均为互联网收集或者用户上传发布,本站仅提供信息存储服务!如有侵权或有涉及法律问题请联系我们。
举报
评论区(0)
按点赞数排序
用户头像
精选文章
thumb 中国研究员首次曝光美国国安局顶级后门—“方程式组织”
thumb 俄乌线上战争,网络攻击弥漫着数字硝烟
thumb 从网络安全角度了解俄罗斯入侵乌克兰的相关事件时间线